
Finding Closest Lattice Vectors Using
Approximate Voronoi Cells

Emmanouil Doulgerakis, Thijs Laarhoven(B), and Benne de Weger

Eindhoven University of Technology, Eindhoven, The Netherlands
{e.doulgerakis,b.m.m.d.weger}@tue.nl, mail@thijs.co

Abstract. The two traditional hard problems underlying the security
of lattice-based cryptography are the shortest vector problem (SVP) and
the closest vector problem (CVP). For a long time, lattice enumeration
was considered the fastest method for solving these problems in high
dimensions, but recent work on memory-intensive methods has resulted
in lattice sieving overtaking enumeration both in theory and in practice.
Some of the recent improvements [Ducas, Eurocrypt 2018; Laarhoven–
Mariano, PQCrypto 2018; Albrecht–Ducas–Herold–Kirshanova–Postle-
thwaite–Stevens, 2018] are based on the fact that these methods find
more than just one short lattice vector, and this additional data can be
reused effectively later on to solve other, closely related problems faster.
Similarly, results for the preprocessing version of CVP (CVPP) have
demonstrated that once this initial data has been generated, instances of
CVP can be solved faster than when solving them directly, albeit with
worse memory complexities [Laarhoven, SAC 2016].

In this work we study CVPP in terms of approximate Voronoi cells,
and obtain better time and space complexities using randomized slicing,
which is similar in spirit to using randomized bases in lattice enumer-
ation [Gama–Nguyen–Regev, Eurocrypt 2010]. With this approach, we
improve upon the state-of-the-art complexities for CVPP, both theo-
retically and experimentally, with a practical speedup of several orders
of magnitude compared to non-preprocessed SVP or CVP. Such a fast
CVPP solver may give rise to faster enumeration methods, where the
CVPP solver is used to replace the bottom part of the enumeration tree,
consisting of a batch of CVP instances in the same lattice.

Asymptotically, we further show that we can solve an exponential
number of instances of CVP in a lattice in essentially the same amount of
time and space as the fastest method for solving just one CVP instance.
This is in line with various recent results, showing that perhaps the
biggest strength of memory-intensive methods lies in being able to reuse
the generated data several times. Similar to [Ducas, Eurocrypt 2018],
this further means that we can achieve a “few dimensions for free” for
sieving for SVP or CVP, by doing Θ(d/ log d) levels of enumeration on
top of a CVPP solver based on approximate Voronoi cells.

Keywords: Lattices · Preprocessing · Voronoi cells ·
Sieving algorithms · Shortest vector problem (SVP) ·
Closest vector problem (CVP)

c© Springer Nature Switzerland AG 2019
J. Ding and R. Steinwandt (Eds.): PQCrypto 2019, LNCS 11505, pp. 3–22, 2019.
https://doi.org/10.1007/978-3-030-25510-7_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-25510-7_1&domain=pdf
https://doi.org/10.1007/978-3-030-25510-7_1


4 E. Doulgerakis et al.

1 Introduction

Lattice Problems. Lattices are discrete subgroups of R
d: given a basis

B = {b1, . . . , bd} ⊂ R
d, the lattice generated by B is defined as L = L(B) :=

{∑d
i=1 λibi : λi ∈ Z}. Given a basis of L, the shortest vector problem (SVP)

is to find a (non-zero) lattice vector s of Euclidean norm ‖s‖ = λ1(L) :=
minv∈L\{0} ‖v‖. Given a basis of a lattice and a target vector t ∈ R

d, the closest
vector problem (CVP) is to find a lattice vector s ∈ L closest to t. The prepro-
cessing variant of CVP (CVPP) asks to preprocess the lattice L such that, when
later given a target vector t, one can quickly find a closest lattice vector to t.

SVP and CVP are fundamental in the study of lattice-based cryptography, as
the security of many schemes is directly related to their hardness. Various other
hard lattice problems, such as Learning With Errors (LWE), are closely related to
SVP and CVP; see, e.g., [63,74,75] for reductions among lattice problems. These
reductions show that understanding the hardness of SVP and CVP is crucial for
accurately estimating the security of lattice-based cryptographic schemes.

1.1 Related Work

Worst-Case SVP/CVP Analyses. Although SVP and CVP are both cen-
tral in the study of lattice-based cryptography, algorithms for SVP have received
somewhat more attention, including a benchmarking website to compare differ-
ent methods [1]. Various SVP algorithms have been studied which can solve
CVP as well, such as the polynomial-space, superexponential-time lattice enu-
meration studied in [14,32,38,40,47,66]. More recently, methods have been pro-
posed which solve SVP/CVP in only single exponential time, but which also
require exponential-sized memory [2,6,64]. By constructing the Voronoi cell of
the lattice [4,25,64,73], Micciancio–Voulgaris showed that SVP and CVP(P) can
provably be solved in time 22d+o(d), and Bonifas–Dadush reduced the complex-
ity for CVPP to only 2d+o(d). In high dimensions the best provable complexities
for SVP and CVP are currently due to discrete Gaussian sampling [2,3], solving
both problems in 2d+o(d) time and space in the worst case on arbitrary lattices.

Average-Case SVP/CVP Algorithms. When considering and comparing
these methods in practice on random lattices, we get a completely different pic-
ture. Currently the fastest heuristic methods for SVP and CVP in high dimen-
sions are based on lattice sieving. After a long series of theoretical works on
constructing efficient heuristic sieving algorithms [18–21,50,53,65,68,78,80] as
well as applied papers studying how to further speed up these algorithms in prac-
tice [28,35,39,46,54,57–61,67,71,72], the best heuristic time complexity for solv-
ing SVP (and CVP [52]) currently stands at 20.292d+o(d) [18,59], using 20.208d+o(d)

memory. The highest records in the SVP challenge [1] were recently obtained
using a BKZ-sieving hybrid [7]. These recent improvements have resulted in a
major shift in security estimates for lattice-based cryptography, from estimating
the hardness of SVP/CVP using the best enumeration methods, to estimating
this hardness based on state-of-the-art sieving results [9,24,26,27,36].



Finding Closest Lattice Vectors Using Approximate Voronoi Cells 5

Hybrid Algorithms and Batch-CVP. In moderate dimensions, enumeration-
based methods dominated for a long time, and the cross-over point with single-
exponential time algorithms like sieving seemed to be far out of reach [66].
Moreover, the exponential memory of, e.g., lattice sieving will ultimately also sig-
nificantly slow down these algorithms due to the large number of random mem-
ory accesses [23], and parallelizing sieving efficiently is less trivial than paralleliz-
ing enumeration [7,23,28,46,59,67,79]. Some previous work focused on obtain-
ing a trade-off between enumeration and sieving, using less memory for sieving
[17,43,44] or using more memory for enumeration [48].

Another well-known direction for a hybrid between memory-intensive meth-
ods and enumeration is to use a fast CVP(P) algorithm as a subroutine within
enumeration. As described in, e.g., [40,66], at any given level in the enumeration
tree, one is attempting to solve a CVP instance in a lower-rank sublattice, where
the target vector is determined by the path from the root to the current node
in the tree. Each node at this level in the tree corresponds to a CVP instance
in the same sublattice, but with a different target. If we can preprocess this
low-dimensional sublattice such that the amortized time complexity of solving
a batch of CVP-instances in this sublattice is small, then this may speed up
processing the bottom part of the enumeration tree.

A first step in this direction was taken in [52], where it was shown that with
a sufficient amount of preprocessing and space, one can achieve better amortized
time complexities for batch-CVP than when solving just one instance. The large
memory requirement (at least 2d/2+o(d) memory is required to improve upon
direct CVP approaches) as well as the large number of CVP instances required
to get a lower amortized complexity made this approach impractical to date.

1.2 Contributions: Approximate Voronoi Cells

In this paper we revisit the preprocessing approach to CVP of [52], as well as the
recent trend of speeding up these algorithms using nearest neighbor searching,
and we show how to obtain significantly improved time and space complexities.
These results can be viewed as a first step towards a practical, heuristic alter-
native to the Voronoi cell approach of Micciancio–Voulgaris [66], where instead
of constructing the exact Voronoi cell, the preprocessing computes an approxi-
mation of it, requiring less time and space to compute and store.

First, our preprocessing step consists of computing a list L of most lattice vec-
tors below a given norm.1 This preprocessing can be done using either enumera-
tion or sieving. The preprocessed data can best be understood as representing an
approximate Voronoi cell VL of the lattice, where the size of L determines how
well VL approximates the true Voronoi cell V of the lattice; see Fig. 1 for an exam-
ple. Using this approximate Voronoi cell, we then attempt to solve CVP instances
by applying the iterative slicing procedure of Sommer–Feder–Shalvi [73], with
nearest neighbor optimizations to reduce the search costs [12,18].
1 Heuristically, finding a large fraction of all lattice vectors below a given norm will

suffice – one does not necessarily need to run a deterministic preprocessing algorithm
to ensure all short lattice vectors are found.



6 E. Doulgerakis et al.

O

r1

r2

r3

r4

r5

r6

V

(a) A tiling of R2 with exact Voronoi cells
V of a lattice L (red/black points), gener-
ated by the set R = {r1, . . . , r6} of all rel-
evant vectors of L. Here vol(V) = det(L).

O

r1

r2

r4

r5

VL

(b) An overlapping tiling of R2 with ap-
proximate Voronoi cells VL of the same
lattice L, generated by a subset of the
relevant vectors, L = {r1, r2, r4, r5} ⊂ R.

Fig. 1. Exact and approximate Voronoi cells of the same two-dimensional lattice L.
For the exact Voronoi cell V (Fig. 1a), the cells around the lattice points form a tiling
of R

2, covering each point in space exactly once. Given that a point t lies in the
Voronoi cell around s ∈ L, we know that s is the closest lattice point to t. For the
approximate Voronoi cell VL (Fig. 1b), the cells around the lattice points overlap,
and cover a non-empty fraction of the space by multiple cells. Given that a vector t
lies in an approximate Voronoi cell around a lattice point s, we further do not have
the definite guarantee that s is the closest lattice point to t. (Color figure online)

The main difference in our work over [52] lies in generalizing how similar VL

(generated by the list L) needs to be to V. We distinguish two cases below. As
sketched in Fig. 1, a worse approximation leads to a larger approximate Voronoi
cell, so vol(VL) ≥ vol(V) with equality iff V = VL.

Good approximations: If VL is a good approximation of V (i.e., vol(VL) ≈
vol(V)), then with high probability over the randomness of the target vec-
tors, the iterative slicer returns the closest lattice vector to random targets.
To guarantee vol(VL) ≈ vol(V) we need |L| ≥ 2d/2+o(d), where additional
memory can be used to speed up the nearest neighbor part of the iterative
slicer. The resulting query complexities are sketched in red in Fig. 2.

Arbitrary approximations: If the preprocessed list contains fewer than 2d/2

vectors, then vol(VL) � vol(V) and with overwhelming probability the itera-
tive slicer will not return the closest lattice point to a random target vector.
However, similar to [40], the running time of this method is decreased by a
much more significant factor than the success probability. So if we are able
to rerandomize the problem instance and try several times, we may still be
faster (and more memory-efficient) than when using a larger list L.



Finding Closest Lattice Vectors Using Approximate Voronoi Cells 7

1.3 Contributions: Randomized Slicing

To actually find solutions to CVP instances with a “bad” approximation VL to
the real Voronoi cell V, we need to be able to suitably rerandomize the iterative
slicing procedure, so that if the success probability in a single run of the slicer
is small, we can repeat the method several times for a high success probabil-
ity. To do this, we will run the iterative slicer on randomly perturbed vectors
t′ ∼ Dt+L,s, sampled from a discrete Gaussian over the coset t + L. Here the
standard deviation s needs to be sufficiently large to make sampling from Dt+L,s

efficient and the results of the slicer to be almost independent, and s needs to
be sufficiently small to guarantee that the slicer will terminate in a limited num-
ber of steps. Algorithm 1 explicitly describes this procedure, given as input an
approximate Voronoi cell VL (i.e., a list L ⊂ L of short lattice vectors defining
the facets of this approximate Voronoi cell).

Algorithm 1. The randomized heuristic slicer for finding closest vectors
Require: A list L ⊂ L and a target t ∈ R

d

Ensure: The algorithm outputs a closest lattice vector s ∈ L to t
1: s ← 0 � Initial guess s for closest vector to t
2: repeat
3: Sample t′ ∼ Dt+L,s � Randomly shift t by a vector v ∈ L
4: for each r ∈ L do
5: if ‖t′ − r‖ < ‖t′‖ then � New shorter vector t′ ∈ t + L
6: Replace t′ ← t′ − r and restart the for-loop

7: if ‖t′‖ < ‖t − s‖ then
8: s ← t − t′ � New lattice vector s closer to t

9: until s is a closest lattice vector to t
10: return s

Even though this algorithm requires sampling many vectors from the coset
t+L and running the iterative slicer on all of these, the overall time complexity
of this procedure will still be lower, since the iterative slicer needs less time to
complete when the input list L is shorter. To estimate the number of iterations
necessary to guarantee that the algorithm returns the actual closest vector, we
make the following assumption, stating that the probability that the iterative
slicer terminates with a vector t′ ∈ (t + L) ∩ V, given that it must terminate to
some vector t′ ∈ (t+L)∩VL, is proportional to the ratio of the volumes of these
(approximate) Voronoi cells V and VL.

Heuristic assumption 1 (Randomized slicing) For L ⊂ L and large s,

Pr
t′∼Dt+L,s

[
SliceL(t′) ∈ V

]
≈ vol(V)

vol(VL)
. (1)

This is a new and critical assumption to guarantee that the claimed asymptotic
complexities are correct, and we will therefore come back to this assumption
later on, to show that experiments indeed suggest this assumption is justified.



8 E. Doulgerakis et al.

1.4 Contributions: Improved CVPP Complexities

For the exact closest vector problem with preprocessing, our improved complexi-
ties over [52] mainly come from the aforementioned randomizations. To illustrate
this with a simple example, suppose we run an optimized (GaussSieve-based [65])
LDSieve [18], ultimately resulting in a list of (4/3)d/2+o(d) of the shortest vectors
in the lattice, indexed in a nearest neighbor data structure of size (3/2)d/2+o(d).
Asymptotically, using this list as our approximate Voronoi cell, the iterative slicer
succeeds with probability p = (13/16)d/2+o(d) (as shown in the analysis later on),
while processing a query with this data structure takes time (9/8)d/2+o(d). By
repeating a query 1/p times with rerandomizations of the same CVP instance,
we obtain the following heuristic complexities for CVPP.

Proposition 1 (Standard sieve preprocessing). Using the output of the
LDSieve [18] as the preprocessed list and encompassing data structure, we can
heuristically solve CVPP with the following query space and time complexities:

S = (3/2)d/2+o(d) ≈ 20.292d+o(d), T = (18/13)d/2+o(d) ≈ 20.235d+o(d).

This point (S,T) is highlighted in light blue in Fig. 2.

If we use a more general analysis of the approximate Voronoi cell approach,
varying over both the nearest neighbor parameters and the size of the prepro-
cessed list, we can obtain even better query complexities. For a memory com-
plexity of (3/2)d/2+o(d) ≈ 20.292d+o(d), we can achieve a query time complexity of
approximately 20.220d+o(d) by using a shorter list of lattice vectors, and a more
memory-intensive parameter setting for the nearest neighbor data structure. The
following main result summarizes all the asymptotic time–space trade-offs we can
obtain for heuristically solving CVPP in the average case.

Theorem 1 (Optimized CVPP complexities). Let α ∈ (1.03396,
√

2) and

u ∈ (
√

α2−1
α2 ,

√
α2

α2−1 ). With approximate Voronoi cells we can heuristically solve
CVPP with preprocessing space and time S1 and T1, and query space and time
S2 and T2, where:

S1 = max

{

S2,

(
4
3

)d/2+o(d)
}

, T1 = max

{

S2,

(
3
2

)d/2+o(d)
}

, (2)

S2 =
(

α

α − (α2 − 1)(αu2 − 2u
√

α2 − 1 + α)

)d/2+o(d)

, (3)

T2 =

(
16α4

(
α2 − 1

)

−9α8+64α6−104α4+64α2−16
· α + u

√
α2 − 1

−α3 + α2u
√

α2 − 1 + 2α

)d/2+o(d)

. (4)

The best query complexities (S2,T2) together form the blue curve in Fig. 2.

Compared to [52], we obtain trade-offs for much lower memory complexities,
and we improve upon both the best CVPP complexities of [52] and the best



Finding Closest Lattice Vectors Using Approximate Voronoi Cells 9

Fig. 2. Query complexities for finding closest vectors, directly (CVP) and with prepro-
cessing (CVPP). The leftmost red points/curve show the best asymptotic SVP/CVP
complexities of Becker–Gama–Joux [19], Becker–Ducas–Gama–Laarhoven [18], and
Herold–Kirshanova–Laarhoven [44]. The rightmost red point and curve are the previ-
ous best CVPP complexities of [52]. The blue curve shows our new CVPP complexities.
(Color figure online)

SVP/CVP complexities of [18,44].2 Observe that our trade-off passes below all
the best CVP results, i.e., we can always solve an exponentially large batch of
2εd CVP instances for small ε > 0 in the same amount of time as the current
best complexities for solving just one instance, for any memory bound.

Due to the condition that α > 1.0339 . . . (which follows from the fact that
the denominator in T2 needs to remain positive), the blue curve in Fig. 2 termi-
nates on the left side at a minimum query space complexity of 1.03396d+o(d) ≈
20.0482d+o(d). One might wonder whether we can obtain a continuous trade-off
between the query time and space complexities reaching all the way to 2o(d)

memory and 2ω(d) query time. The lower bound on α might be a consequence of
our analysis, and perhaps a different approach would show this algorithm solves
CVPP in 2O(d) time even with less memory.

As for the other end of the blue curve, as the available space increases, one can
achieve an amortized time complexity for CVP of 2εd+o(d) at the cost of (1/ε)O(d)

preprocessed space for arbitrary ε > 0. For large query space complexities, i.e.,
when a lot of memory and preprocessing power is available for speeding up the
queries, the blue and red curve converge, and the best parameter choice is to set
α ≈ √

2 such that VL ≈ V, as explained in Sect. 1.2.

2 As detailed in [52], by modifying sieve algorithms for SVP, one can also solve CVP
with essentially equivalent heuristic time and space complexities as for SVP.



10 E. Doulgerakis et al.

Concrete Complexities. Although Theorem1 and Fig. 2 illustrate how well we
expect these methods to scale in high dimensions d, we would like to stress that
Theorem 1 is a purely asymptotic result, with potentially large order terms hid-
den by the o(d) in the exponents for the time and space complexities. To obtain
security estimates for real-world applications, and to assess how fast this algo-
rithm actually solves problems appearing in the cryptanalysis of lattice-based
cryptosystems, it therefore remains necessary to perform extensive experiments,
and to cautiously try to extrapolate from these results what the real attack costs
might be for high dimensions d, necessary to attack actual instantiations of cryp-
tosystems. Later on we will describe some preliminary experiments we performed
to test the practicality of this approach, but further work is still necessary to
assess the impact of these results on the concrete hardness of CVPP.

1.5 High-Level Proof Description

To prove the main results regarding the improved asymptotic CVPP complexities
compared to [52], we first prove that under certain natural heuristic assumptions,
we obtain the following upper bound on the volume of approximate Voronoi cells
generated by the αd+o(d) shortest vectors of a lattice. The preprocessing will
consist of exactly this: generate the αd+o(d) shortest vectors in the lattice, and
store them in a nearest neighbor data structure that allows for fast look-ups of
nearby points in space.

Lemma 1 (Relative volume of approximate Voronoi cells). Let L ⊂ L
consist of the αd+o(d) shortest vectors of a lattice L, with α ∈ (1.03396,

√
2).

Then heuristically,

vol(VL)
vol(V)

≤
(

16α4
(
α2 − 1

)

−9α8 + 64α6 − 104α4 + 64α2 − 16

)d/2+o(d)

. (5)

Using this lemma and the heuristic assumption stated previously, relating the
success probability of the slicer to the volume of the approximate Voronoi cell,
this immediately gives us a (heuristic) lower bound on the success probability
pα of the randomized slicing procedure, given as input a preprocessed list of
the αd+o(d) shortest vectors in the lattice. Then, similar to [52], the complexity
analysis is a matter of combining the costs for the preprocessing phase, the costs
of the nearest neighbor data structure, and the cost of the query phase, where
now we need to repeat the randomized slicing of the order 1/pα times – the
difference in the formulas for the complexities compared to [52] comes exactly
from this additional factor 1/pα ≈ vol(VL)/ vol(V).

To prove the above lemma regarding the volume of approximate Voronoi cells,
we will prove the following statements. First, we show that if the list L contains
the αd+o(d) shortest vectors of a random lattice L, then on input a target vector
t, we heuristically expect the slicer to terminate on a reduced vector t′ ∈ t+L of
norm at most ‖t′‖ ≤ β · λ1(L), where β is determined by the parameter α. The
relation between α and β can be succinctly described by the following relation



Finding Closest Lattice Vectors Using Approximate Voronoi Cells 11

β = α2/
√

4α2 − 4. (6)

More precisely, we show that as long as ‖t′‖ � β · λ1(L), then with high prob-
ability we expect to be able to combine t′ with vectors in L to form a shorter
vector t′′ ∈ t + L with ‖t′′‖ < ‖t′‖. On the other hand, if we have a vector
t′ ∈ t+L of norm less than β ·λ1(L), then we only expect to be able to combine
t′ with a vector in L to form a shorter vector with exponentially small probabil-
ity 2−Θ(d). In other words, reducing to a vector of norm β · λ1(L) can be done
almost “effortlessly”, while after that even making small progress in reducing
the length of t′ comes at an exponential loss in the success probability.

Good Approximations. Next, from the above relation between the size of
the input list, |L| (or α), and the reduced norm of the shifted target vector,
‖t′‖ (or β), the previous result of [52] immediately follows – to achieve t′ ∈ V
we heuristically need β = 1 + o(1). This implies that α =

√
2 is the minimal

parameter that guarantees we will be able to effortlessly reduce to the exact
Voronoi cell, and so L must contain the αd+o(d) = 2d/2+o(d) shortest vectors in
the lattice. In that case the success probability is constant, and the costs of the
query phase are determined by a single reduction of t with the iterative slicer.

Arbitrary Approximations. However, even if α <
√

2 is smaller, and the
corresponding β is therefore larger than 1, the slicer might still succeed with
(exponentially) small probability. To analyze the success probability, note that
from the Gaussian heuristic we may assume that the closest vector to our target
t lies uniformly at random in a ball (or sphere) of radius λ1(L) around t. Then,
also for the reduced vector t′ of norm at most β ·λ1(L), the closest lattice vector
lies in a ball of radius λ1(L) around it. Since our list L contains all vectors of
norm less than α ·λ1(L), we will clearly find the closest lattice vector in the list L
if the closest lattice vector lies in the intersection of two balls of radii λ1(L) (resp.
α ·λ1(L)) around t′ (resp. 0). Estimating the volume of this intersection of balls,
relative to the volume of the ball of radius λ1(L) around t′, then gives us a lower
bound on the success probability of the slicer, and a heuristic upper bound on the
volume of the corresponding approximate Voronoi cell. This analysis ultimately
leads to the aforementioned lemma.

Tightness of the Proof. Note that the above proof technique only gives us a
lower bound on the success probability, and an upper bound on the volume of the
approximate Voronoi cell: when the target vector has been reduced to a vector
of norm at most β · λ1(L), we bound the success probability of the slicer by
the probability that the slicer now terminates successfully in a single iteration.
Since the algorithm might also succeed in more than one additional iteration, the
actual success probability may be higher. A tighter analysis, perhaps showing
that the given heuristic bound can be improved upon, is left for future work.



12 E. Doulgerakis et al.

1.6 Intermezzo: Another Few Dimensions for Free

Recently, Ducas [35] showed that in practice, one can effectively use the addi-
tional vectors found by lattice sieving to solve a few extra dimensions of SVP
“for free”. More precisely, by running a lattice sieve in a base dimension d, one
can solve SVP in dimension d′ = d + Θ(d/ log d) at little additional cost. This is
done by taking all vectors returned by a d-dimensional lattice sieve, and running
Babai’s nearest plane algorithm [16] on all these vectors in the d′-dimensional
lattice to find short vectors in the full lattice. If d′ is close enough to d, one of
these vectors will then be “rounded” to a shortest vector of the full lattice.

On a high level, Ducas’ approach can be viewed as a sieving/enumeration
hybrid, where the top part of enumeration is replaced with sieving, and the bot-
tom part is done regularly as in enumeration, which is essentially equivalent to
doing Babai rounding [16]. The approach of using a CVPP-solver inside enumer-
ation is in a sense dual to Ducas’ idea, as here the bottom part of the enumeration
tree is replaced with a (sieving-like) CVPP routine. Since our CVPP complex-
ities are strictly better than the best SVP/CVP complexities, we can also gain
up to Θ(d/ log d) dimensions for free as follows:
1. First, we initialize an enumeration tree in the full lattice L of dimension

d′ = d+k, and we process the top k = ε·d/ log d levels as usual in enumeration.
This will result in 2Θ(k log k) = 2Θ(d) target vectors at level k, and this requires
a similar time complexity of 2Θ(d) to generate all these target vectors.

2. Then, we run the CVPP preprocessing on the d-dimensional sublattice of
L corresponding to the bottom part of the enumeration tree. This may for
instance take time 20.292d+o(d) and space 20.208d+o(d) using the sieve of [18].

3. Finally, we take the batch of 2Θ(d) target vectors at level k in the enumeration
tree, and we solve CVP for each of them with our approximate Voronoi cell
and randomized slicing algorithm, with query time 20.220d+o(d) each.

By setting k = ε · d/ log d as above with small, constant ε > 0, the costs for
solving SVP or CVP in dimension d′ are asymptotically dominated by the costs
of the preprocessing step, which is as costly as solving SVP or CVP in dimension
d. So similar to [35], asymptotically we also get Θ(d/ log d) dimensions “for free”.
However, unlike for Ducas’ idea, in practice the dimensions are likely not quite
as free here, as there is more overhead for doing the CVPP-version of sieving
than for Ducas’ additional batch of Babai nearest plane calls.

Even More Dimensions for Free. A natural question one might ask now
is: can both ideas be combined to get even more dimensions “for free”? At first
sight, this seems hard to accomplish, as Ducas’ idea speeds up SVP rather than
CVPP. Furthermore, note that when solving SVP without Ducas’ trick, one gets
20.208d+o(d) short lattice vectors when only one shortest vector is needed, and so
in a sense one might “naturally” hope to gain something by going for only one
short output vector. Here the analysis of the iterative slicer is already based on
the fact that ultimately, we hope to reduce a single target vector to its closest
neighbor in the lattice. There might be a way of combining both ideas to get
even more dimensions for free, but for now this is left as an open problem.



Finding Closest Lattice Vectors Using Approximate Voronoi Cells 13

1.7 Contributions: Experimental Results

Besides the theoretical contributions mentioned above, with improved heuris-
tic time and space complexities compared to [52], for the first time we also
implemented a (sieving-based) CVPP solver using approximate Voronoi cells.
For the preprocessing we used a slight modification of a lattice sieve, return-
ing more vectors than a standard sieve, allowing us to vary the list size in our
experiments. Our implementations serve two purposes: validating the additional
heuristic assumption we make, and to see how well the algorithm performs.

Validation of the Randomization Assumption. To obtain the aforemen-
tioned improved asymptotic complexities for solving CVPP, we required a new
heuristic assumption, stating that if the iterative slicer succeeds with some prob-
ability p on a CVP instance t, then we can repeat it 1/p times with perturbations
t′ ∼ Dt+L,s to achieve a high success probability for the same target t. To ver-
ify this assumption, we implemented our method and tested it on lattices of
dimension 50 with a range of randomly chosen targets to see whether, if the
probability of success is small, repeating the method m times will increase the
success rate by a factor m. Figure 3 shows performance metrics for various num-
bers of repetitions and for varying list sizes. In particular, Fig. 3a illustrates the
increased success probability as the number of repetitions increases, and Fig. 3c
shows that the normalized success probability per trial3 seems independent of
the number of repetitions. Therefore, the “expected time” metric as illustrated
in Fig. 3b appears to be independent of the number of trials.

Experimental Performance. Unlike the success probabilities, the time com-
plexity might vary a lot depending on the underlying nearest neighbor data
structure. For our experiments we used hyperplane LSH [29] as also used in the
HashSieve [50,58], as it is easy to implement, has few parameters to set, and
performs better in low dimensions (d = 50) than the LDSieve [18,59].

To put the complexities of Fig. 3b into perspective, let us compare the nor-
malized time complexities for CVPP with the complexities of sieving for SVP,
which by [52] are comparable to the costs for CVP. First, we note that the
HashSieve algorithm solves SVP in approximately 4 s on the same machine.
This means that in dimension 50, the expected time complexity for CVPP with
the HashSieve (roughly 2 ms) is approximately 2000 times smaller than the time
for solving SVP. To explain this gap, observe that the list size for solving SVP
is approximately 4000, and so the HashSieve algorithm needs to perform in the
order of 4000 reductions of newly sampled vectors with a list of size 4000. For
solving CVPP, we only need to reduce 1 target vector, with a slightly larger list
of 10 000 to 15 000 vectors. So we save a factor 4000 on the number of reduc-
tions, but the searches are more expensive, leading to a speed-up of less than a
factor 4000.
3 As the success prob. q for m trials scales as q = 1−(1−p)m if each trial independently

has success prob. p, we computed the success prob. per trial as p = 1 − (1 − q)1/m.



14 E. Doulgerakis et al.

Fig. 3. Experimental results for solving CVPP with randomized slicing in dimension
50. Each data point corresponds to 10 000 random target vectors for those parameters.

Predictions and Extrapolations. For solving SVP or CVP, the Hash-
Sieve [50] reports time complexities in dimension d of 20.45d−19 s, corresponding
to 11 s in dimension 50, i.e., a factor 3 slower than here. This is based on doing
n ≈ 20.21d reductions of vectors with the list. If doing only one of these searches
takes a factor 20.21d less time, and we take into account that for SVP the time
complexity is now a factor 3 less than in [50], then we obtain an estimated com-
plexity for CVPP in dimension d of 20.24d−19/3, which for d = 50 corresponds
to approximately 2.6 ms. A rough extrapolation would then lead to a time com-
plexity in dimension 100 of only 11 s. This however seems to be rather optimistic
– preliminary experiments in dimensions 60 and 70 suggest that the overhead of
using a lot of memory may be rather high here, as the list size is usually even
larger than for standard sieving.



Finding Closest Lattice Vectors Using Approximate Voronoi Cells 15

1.8 Contributions: Asymptotics for Variants of CVPP

For easier variants of CVP, such as when the target lies closer to the lattice
than expected or an approximate solution to CVP suffices as a solution, we
obtain considerable gains in both the time and space complexities when using
preprocessing. We explicitly consider two variants of CVPP below.

BDDPδ . For bounded distance decoding with preprocessing (BDDP), we are
given a target vector t and a guarantee that t lies within distance δ · λ1(L) to
the nearest lattice vector, for some parameter δ > 0. By the Gaussian heuristic,
setting δ = 1 makes this problem as hard as general CVPP without a distance
guarantee, while for small δ → 0 polynomial-time algorithms exist [16].

By adjusting the analysis leading up to Theorem1 for BDDP, we obtain the
same result as Theorem 1 with two modifications: T2 is replaced by T(δ)

2 below,
and the range of admissable values α changes to (α0, α1), with α0 the smallest
root larger than 1 of the denominator of the left-most term in T(δ)

2 , and α1 the
smallest value larger than 1 such that the left-most term in T(δ)

2 equals 1. The
resulting optimized trade-offs for various δ ∈ (0, 1) are plotted in Fig. 4a.

T(δ)
2 =

(
16α4

(
α2 − 1

)
δ2

−9α8+8α6(3+5δ2)−8α4(2+9δ2+2δ4)+32α2(δ2+δ4)−16δ4
· [. . . ]

)d/2+o(d)

. (7)

Note that in the limit of δ → 0, our algorithm tries to reduce a target close
to the lattice to the origin. This is similar to reducing a vector to the 0-vector
in the GaussSieve [65], and even with a long list of all short lattice vectors this
does not occur with probability 1. Here also the limiting curve in Fig. 4a shows
that for δ → 0 with suitable parameterization we can do better than just with
sieving, but we do not get polynomial time and space complexities.

CVPPκ . For the approximate version of CVPP, a lattice vector v qualifies as a
solution for t if it lies at most a factor κ further from the real distance of t from
the lattice, for some κ ≥ 1. Heuristically, this is essentially equivalent to looking
for any lattice vector within radius κ ·λ1(L) of the target, and similar to BDDP
the resulting trade-offs can be summarized by Theorem 1 where T2 is replaced
by T(κ)

2 below, and the range of admissable values α again changes to (α0, α1)
as before.

T(κ)
2 =

(
16α4

(
α2 − 1

)

−9α8+8α6(3+5κ2)−8α4(2+9κ2+2κ4)+32α2(κ2+κ4)−16κ4
· [. . . ]

)d/2+o(d)

. (8)

For increasing approximation factors κ → ∞, our algorithm tries to reduce a
target vector to vector of norm less than κ ·λ1(L). For large κ this is increasingly
easy to achieve, and as κ → ∞, both the query time and space complexities in
our analysis converge to zero as expected. Figure 4b highlights this asymptote,
and illustrates the other trade-offs through some examples for small κ > 1.



16 E. Doulgerakis et al.

Fig. 4. Asymptotics for solving variants of CVP(P) with approximate Voronoi cells:
(a) BDDPδ and (b) CVPPκ. Note that the (tail of the) curve for CVPP√

4/3
overlaps

with the curve for BDDP0.



Finding Closest Lattice Vectors Using Approximate Voronoi Cells 17

1.9 Open Problems

Combination with Other Techniques. The focus of this work was on the
asymptotic complexities we can achieve for high dimensions d, and therefore we
focused only on including techniques from the literature that lead to the best
asymptotics. In practice however, there may be various other techniques that
can help speed up these methods in moderate dimensions. This for instance
includes Ducas’ dimensions for free [35], progressive sieving [35,54], the recent
sieving-BKZ hybrid [7], and faster NNS techniques [7,11]. Incorporating such
techniques will likely affect the experimental performance as well, and future
work may show how well the proposed techniques truly perform in practice
when all the state-of-the-art techniques are combined into one.

Faster Enumeration with Approximate Voronoi Cells. As explained
above, one potential application of our CVPP algorithm is as a subroutine within
enumeration, to speed up the searches in the bottom part of the tree. Such an
algorithm can be viewed as a trade-off between enumeration and sieving, where
the level at which we insert the CVPP oracle determines whether we are closer
to enumeration or to sieving. An open question remains whether this would
lead to faster algorithms in practice, or if the preprocessing/query costs are too
high. Note that depending on at which level of the tree the CVPP oracle is
inserted, and on the amount of pruning in enumeration, the hardness of the
CVP instances at these levels also changes. Optimizing all parameters involved
in such a combination appears to be a complex task, and is left for future work.

Sieving in the Dual Lattice. For the application of CVPP within enumera-
tion, observe that a decisional CVPP oracle, deciding whether a vector lies close
to the lattice or not, may actually be sufficient; most branches of the enumer-
ation tree will not lead to a solution, and therefore in most cases running an
accurate decision-CVPP oracle is enough to determine that this subtree is not
the right subtree. For those few subtrees that potentially do contain a solution,
one could then run a full CVP(P) algorithm at a slightly higher cost. Improving
the complexities for the decision-version of CVPP may therefore be an interest-
ing future direction, and perhaps one approach could be to combine this with
ideas from [5], by running a lattice sieve on the dual lattice to find many short
vectors in the dual lattice, which can then be used to check if a target vector
lies close to the primal lattice or not.

Quantum Complexities. As one of the strengths of lattice-based cryptog-
raphy is its conjectured resistance to quantum attacks [22], it is important to
study the potential impact of quantum improvements to SVP and CVP algo-
rithms, so that the parameters can be chosen to be secure in a post-quantum
world [15,55]. For lattice sieving for solving SVP, the time complexity expo-
nent potentially decreases by approximately 25% [55], and for CVPP we expect
the exponents may decrease by approximately 25% as well. Studying the exact



18 E. Doulgerakis et al.

quantum asymptotics of solving CVPP with approximate Voronoi cells is left for
future work.

1.10 Outline

Due to space restrictions, the remainder of the paper, including full details on
all claims, is given in the appendix.4 Below we briefly outline the contents of
these appendices for the interested reader.

Appendix A – Preliminaries
This section describes preliminary results and notation for the technical con-
tents, formally states the main hard problems discussed in the paper, formal-
izes the heuristic assumptions made throughout the paper, and describes
existing results on nearest neighbor searching, lattice sieving algorithms,
Voronoi cells, and Voronoi cell algorithms.

Appendix B – Approximate Voronoi cells
In Appendix B we formalize the CVPP approach considered in this paper in
terms of our approximate Voronoi cell framework with randomized slicing,
and we derive our main results regarding improved asymptotic complexities
for exact CVPP. Approximate Voronoi cells are formally introduced, the main
results are stated and proved in terms of this framework, and all corresponding
algorithms are given in pseudocode.

Appendix C – Experimental results
Appendix C describes the experiments we performed with these methods in
more detail, both to verify the (additional) heuristic assumptions we made
for this paper, and to assess the practicality of our CVPP algorithm. Here we
also briefly compare our results to various published complexities for SVP or
CVP(P), to put these numbers into context.

Appendix D – Asymptotics for variants of CVPP
The last appendix finally discusses asymptotic results for variants of CVPP,
namely approximate CVPP and BDDP. This section contains a more formal
statement of the results given in Sect. 1.8, and explains how the analysis
changes compared to the analysis for exact CVPP, and how this leads to
improved complexities for these slightly easier variants of (exact) CVPP.

Acknowledgments. The authors are indebted to Léo Ducas, whose ideas and sugges-
tions on this topic motivated work on this paper. The authors are further grateful to the
reviewers, whose thorough study of the contents (with one review even exceeding the
page limit for the conference) significantly helped improve the contents of the paper, as
well as improve the presentation of the results. Emmanouil Doulgerakis is supported
by the NWO under grant 628.001.028 (FASOR). At the time of writing a prelimi-
nary version of this paper, Thijs Laarhoven was supported by the SNSF ERC Transfer
Grant CRETP2-166734 FELICITY. At the time of publishing, Thijs Laarhoven is
supported by a Veni Innovational Research Grant from NWO under project number
016.Veni.192.005.

4 The full version of this paper including all appendices will be made available online
at https://eprint.iacr.org/2016/888.

https://eprint.iacr.org/2016/888


Finding Closest Lattice Vectors Using Approximate Voronoi Cells 19

References

1. SVP challenge (2018). http://latticechallenge.org/svp-challenge/
2. Aggarwal, D., Dadush, D., Regev, O., Stephens-Davidowitz, N.: Solving the short-

est vector problem in 2n time via discrete Gaussian sampling. In: STOC, pp. 733–
742 (2015)

3. Aggarwal, D., Dadush, D., Stephens-Davidowitz, N.: Solving the closest vector
problem in 2n time - the discrete Gaussian strikes again! In: FOCS, pp. 563–582
(2015)

4. Agrell, E., Eriksson, T., Vardy, A., Zeger, K.: Closest point search in lattices. IEEE
Transact. Inf. Theor. 48(8), 2201–2214 (2002)

5. Aharonov, D., Regev, O.: Lattice problems in NP ∩ coNP. In: FOCS, pp. 362–371
(2004)

6. Ajtai, M., Kumar, R., Sivakumar, D.: A sieve algorithm for the shortest lattice
vector problem. In: STOC, pp. 601–610 (2001)

7. Albrecht, M., Ducas, L., Herold, G., Kirshanova, E., Postlethwaite, E., Stevens,
M.: The general sieve kernel and new records in lattice reduction. Preprint, 2018

8. Alekhnovich, M., Khot, S., Kindler, G., Vishnoi, N.: Hardness of approximating
the closest vector problem with pre-processing. In: FOCS, pp. 216–225 (2005)

9. Alkim, E., Ducas, L., Pöppelmann, T., Schwabe, P.: Post-quantum key exchange
- a new hope. In: USENIX Security Symposium, pp. 327–343 (2016)

10. Andoni, A., Indyk, P.: Near-optimal hashing algorithms for approximate nearest
neighbor in high dimensions. In: FOCS, pp. 459–468 (2006)

11. Andoni, A., Indyk, P., Laarhoven, T., Razenshteyn, I., Schmidt, L.: Practical and
optimal LSH for angular distance. In: NIPS, pp. 1225–1233 (2015)

12. Andoni, A., Laarhoven, T., Razenshteyn, I., Waingarten, E.: Optimal hashing-
based time-space trade-offs for approximate near neighbors. In: SODA, pp. 47–66
(2017)

13. Andoni, A., Razenshteyn, I.: Optimal data-dependent hashing for approximate
near neighbors. In: STOC, pp. 793–801 (2015)

14. Aono, Y., Nguyen, P.Q.: Random sampling revisited: lattice enumeration with
discrete pruning. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017. LNCS,
vol. 10211, pp. 65–102. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
56614-6 3

15. Aono, Y., Nguyen, P.Q., Shen, Y.: Quantum lattice enumeration and tweaking
discrete pruning. In: Peyrin, T., Galbraith, S. (eds.) ASIACRYPT 2018. LNCS,
vol. 11272, pp. 405–434. Springer, Cham (2018). https://doi.org/10.1007/978-3-
030-03326-2 14

16. Babai, L.: On Lovasz lattice reduction and the nearest lattice point problem. Com-
binatorica 6(1), 1–13 (1986)

17. Bai, S., Laarhoven, T., Stehlé, D.: Tuple lattice sieving. In: ANTS, pp. 146–162
(2016)

18. Becker, A., Ducas, L., Gama, N., Laarhoven, T.: New directions in nearest neighbor
searching with applications to lattice sieving. In: SODA, pp. 10–24 (2016)

19. Becker, A., Gama, N., Joux, A.: A sieve algorithm based on overlattices. In: ANTS,
pp. 49–70 (2014)

20. Becker, A., Gama, N., Joux, A.: Speeding-up lattice sieving without increasing the
memory, using sub-quadratic nearest neighbor search. Cryptology ePrint Archive,
Report 2015/522, pp. 1–14 (2015)

http://latticechallenge.org/svp-challenge/
https://doi.org/10.1007/978-3-319-56614-6_3
https://doi.org/10.1007/978-3-319-56614-6_3
https://doi.org/10.1007/978-3-030-03326-2_14
https://doi.org/10.1007/978-3-030-03326-2_14


20 E. Doulgerakis et al.

21. Becker, A., Laarhoven, T.: Efficient (ideal) lattice sieving using cross-polytope
LSH. In: AFRICACRYPT, pp. 3–23 (2016)

22. Bernstein, D.J., Buchmann, J., Dahmen, E. (eds.): Post-quantum Cryptography.
Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-540-88702-7

23. Bernstein, D.J., Chuengsatiansup, C., Lange, T., van Vredendaal, C.: NTRU prime:
reducing attack surface at low cost. In: Adams, C., Camenisch, J. (eds.) SAC 2017.
LNCS, vol. 10719, pp. 235–260. Springer, Cham (2018). https://doi.org/10.1007/
978-3-319-72565-9 12

24. Bhattacharya, S., et al.: Round5: Compact and fast post-quantum public-key
encryption. Cryptology ePrint Archive, Report 2018/725 (2018)

25. Bonifas, N., Dadush, D.: Short paths on the Voronoi graph and the closest vector
problem with preprocessing. In: SODA, pp. 295–314 (2015)

26. Bos, J., et al.: Frodo: Take off the ring! practical, quantum-secure key exchange
from LWE. In: CCS, pp. 1006–1018 (2016)

27. Bos, J., et al.: CRYSTALS - Kyber: a CCA-secure module-lattice-based KEM. In:
Euro S&P, pp. 353–367 (2018)

28. Bos, J.W., Naehrig, M., van de Pol, J.: Sieving for shortest vectors in ideal lattices:
a practical perspective. Int. J. Appl. Crypt. 3(4), 313–329 (2016)

29. Charikar, M.S.: Similarity estimation techniques from rounding algorithms. In:
STOC, pp. 380–388 (2002)

30. Christiani, T.: A framework for similarity search with space-time tradeoffs using
locality-sensitive filtering. In: SODA, pp. 31–46 (2017)

31. Conway, J.H., Sloane, N.J.A.: Sphere Packings, Lattices and Groups. Springer,
Heidelberg (1999). https://doi.org/10.1007/978-1-4757-6568-7

32. Correia, F., Mariano, A., Proenca, A., Bischof, C., Agrell, E.: Parallel improved
Schnorr-Euchner enumeration SE++ for the CVP and SVP. In: PDP, pp. 596–603
(2016)

33. Dadush, D., Regev, O., Stephens-Davidowitz, N.: On the closest vector problem
with a distance guarantee. In: CCC, pp. 98–109 (2014)

34. The FPLLL development team. FPLLL, a lattice reduction library (2016). https://
github.com/fplll/fplll

35. Ducas, L.: Shortest vector from lattice sieving: a few dimensions for free. In:
Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018. LNCS, vol. 10820, pp. 125–
145. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78381-9 5

36. Ducas, L., Lepoint, T., Lyubashevsky, V., Schwabe, P., Seiler, G., Stehlé, D.:
CRYSTALS - Dilithium: Digital signatures from module lattices. CHES 2018,
238–268 (2018)

37. Feige, U., Micciancio, D.: The inapproximability of lattice and coding problems
with preprocessing. In: CCC, pp. 32–40 (2002)

38. Fincke, U., Pohst, M.: Improved methods for calculating vectors of short length in
a lattice. Math. Comput. 44(170), 463–471 (1985)

39. Fitzpatrick, R., et al.: Tuning gausssieve for speed. In: Aranha, D.F., Menezes, A.
(eds.) LATINCRYPT 2014. LNCS, vol. 8895, pp. 288–305. Springer, Cham (2015).
https://doi.org/10.1007/978-3-319-16295-9 16

40. Gama, N., Nguyen, P.Q., Regev, O.: Lattice enumeration using extreme pruning.
In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 257–278. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5 13

41. Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new
cryptographic constructions. In: STOC, pp. 197–206 (2008)

https://doi.org/10.1007/978-3-540-88702-7
https://doi.org/10.1007/978-3-319-72565-9_12
https://doi.org/10.1007/978-3-319-72565-9_12
https://doi.org/10.1007/978-1-4757-6568-7
https://github.com/fplll/fplll
https://github.com/fplll/fplll
https://doi.org/10.1007/978-3-319-78381-9_5
https://doi.org/10.1007/978-3-319-16295-9_16
https://doi.org/10.1007/978-3-642-13190-5_13


Finding Closest Lattice Vectors Using Approximate Voronoi Cells 21

42. Hermans, J., Schneider, M., Buchmann, J., Vercauteren, F., Preneel, B.: Parallel
shortest lattice vector enumeration on graphics cards. In: AFRICACRYPT, pp.
52–68 (2010)

43. Herold, G., Kirshanova, E.: Improved algorithms for the approximate k -list prob-
lem in euclidean norm. In: Fehr, S. (ed.) PKC 2017. LNCS, vol. 10174, pp. 16–40.
Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-662-54365-8 2

44. Herold, G., Kirshanova, E., Laarhoven, T.: Speed-ups and time–memory trade-offs
for tuple lattice sieving. In: Abdalla, M., Dahab, R. (eds.) PKC 2018. LNCS, vol.
10769, pp. 407–436. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
76578-5 14

45. Indyk, P., Motwani, R.: Approximate nearest neighbors: towards removing the
curse of dimensionality. In: STOC, pp. 604–613 (1998)

46. Ishiguro, T., Kiyomoto, S., Miyake, Y., Takagi, T.: Parallel gauss sieve algorithm:
solving the SVP challenge over a 128-dimensional ideal lattice. In: Krawczyk,
H. (ed.) PKC 2014. LNCS, vol. 8383, pp. 411–428. Springer, Heidelberg (2014).
https://doi.org/10.1007/978-3-642-54631-0 24

47. Kannan, R.: Improved algorithms for integer programming and related lattice prob-
lems. In: STOC, pp. 193–206 (1983)

48. Kirchner, P., Fouque, P.-A.: Time-memory trade-off for lattice enumeration in a
ball. Cryptology ePrint Archive, Report 2016/222 (2016)

49. Klein, P.: Finding the closest lattice vector when it’s unusually close. In: SODA,
pp. 937–941 (2000)

50. Laarhoven, T.: Sieving for shortest vectors in lattices using angular locality-
sensitive hashing. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS,
vol. 9215, pp. 3–22. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-
662-47989-6 1

51. Laarhoven, T.: Tradeoffs for nearest neighbors on the sphere. arXiv:1511.07527
[cs.DS], pp. 1–16 (2015)

52. Laarhoven, T.: Sieving for closest lattice vectors (with preprocessing). In: Avanzi,
R., Heys, H. (eds.) SAC 2016. LNCS, vol. 10532, pp. 523–542. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-69453-5 28

53. Laarhoven, T., de Weger, B.: Faster sieving for shortest lattice vectors using spher-
ical locality-sensitive hashing. In: Lauter, K., Rodŕıguez-Henŕıquez, F. (eds.) LAT-
INCRYPT 2015. LNCS, vol. 9230, pp. 101–118. Springer, Cham (2015). https://
doi.org/10.1007/978-3-319-22174-8 6

54. Laarhoven, T., Mariano, A.: Progressive lattice sieving. In: PQCrypto, pp. 292–311
(2018)

55. Laarhoven, T., Mosca, M., van de Pol, J.: Finding shortest lattice vectors faster
using quantum search. Des. Codes Crypt. 77(2), 375–400 (2015)

56. Lagarias, J.C., Lenstra, H.W., Schnorr, C.-P.: Korkin-Zolotarev bases and succes-
sive minima of a lattice and its reciprocal lattice. Combinatorica 10(4), 333–348
(1990)

57. Mariano, A., Bischof, C.: Enhancing the scalability and memory usage of HashSieve
on multi-core CPUs. In: PDP, pp. 545–552 (2016)

58. Mariano, A., Laarhoven, T., Bischof, C.: Parallel (probable) lock-free HashSieve: a
practical sieving algorithm for the SVP. In: ICPP, pp. 590–599 (2015)

59. Mariano, A., Laarhoven, T., Bischof, C.: A parallel variant of LDSieve for the SVP
on lattices. In: PDP, pp. 23–30 (2017)

https://doi.org/10.1007/978-3-662-54365-8_2
https://doi.org/10.1007/978-3-319-76578-5_14
https://doi.org/10.1007/978-3-319-76578-5_14
https://doi.org/10.1007/978-3-642-54631-0_24
https://doi.org/10.1007/978-3-662-47989-6_1
https://doi.org/10.1007/978-3-662-47989-6_1
http://arxiv.org/abs/1511.07527
https://doi.org/10.1007/978-3-319-69453-5_28
https://doi.org/10.1007/978-3-319-22174-8_6
https://doi.org/10.1007/978-3-319-22174-8_6


22 E. Doulgerakis et al.

60. Mariano, A., Dagdelen, Ö., Bischof, C.: A comprehensive empirical comparison of
parallel listsieve and gausssieve. In: Lopes, L., et al. (eds.) Euro-Par 2014. LNCS, vol.
8805, pp. 48–59. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-14325-
5 5

61. Mariano, A., Timnat, S., Bischof, C.: Lock-free GaussSieve for linear speedups in
parallel high performance SVP calculation. In: SBAC-PAD, pp. 278–285 (2014)

62. Micciancio, D.: The hardness of the closest vector problem with preprocessing. IEEE
Transact. Inf. Theory 47(3), 1212–1215 (2001)

63. Micciancio, D.: Efficient reductions among lattice problems. In: SODA, pp. 84–93
(2008)

64. Micciancio, D., Voulgaris, P.: A deterministic single exponential time algorithm for
most lattice problems based on Voronoi cell computations. In: STOC, pp. 351–358
(2010)

65. Micciancio, D., Voulgaris, P.: Faster exponential time algorithms for the shortest vec-
tor problem. In: SODA, pp. 1468–1480 (2010)

66. Micciancio, D., Walter, M.: Fast lattice point enumeration with minimal overhead.
In: SODA, pp. 276–294 (2015)

67. Milde, B., Schneider,M.: Aparallel implementation of gausssieve for the shortest vec-
tor problem in lattices. In: Malyshkin, V. (ed.) PaCT 2011. LNCS, vol. 6873, pp. 452–
458. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-23178-0 40

68. Nguyên, P.Q., Vidick, T.: Sieve algorithms for the shortest vector problem are prac-
tical. J. Math. Cryptol. 2(2), 181–207 (2008)

69. Dagdelen, Ö., Schneider, M.: Parallel enumeration of shortest lattice vectors. In:
D’Ambra, P., Guarracino, M., Talia, D. (eds.) Euro-Par 2010. LNCS, vol. 6272, pp.
211–222. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15291-
7 21

70. Regev, O.: Improved inapproximability of lattice and coding problems with prepro-
cessing. IEEE Transact. Inf. Theory 50(9), 2031–2037 (2004)

71. Schneider, M.: Analysis of Gauss-Sieve for solving the shortest vector problem in
lattices. In: Katoh, N., Kumar, A. (eds.) WALCOM 2011. LNCS, vol. 6552, pp. 89–
97. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-19094-0 11

72. Schneider, M.: Sieving for shortest vectors in ideal lattices. In: Youssef, A., Nitaj,
A., Hassanien, A.E. (eds.) AFRICACRYPT 2013. LNCS, vol. 7918, pp. 375–391.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38553-7 22

73. Sommer, N., Feder, M., Shalvi, O.: Finding the closest lattice point by iterative slic-
ing. SIAM J. Discret. Math. 23(2), 715–731 (2009)

74. Stephens-Davidowitz, N.: Dimension-preserving reductions between lattice prob-
lems, pp. 1–6 (2016). http://noahsd.com/latticeproblems.pdf

75. van de Pol, J.: Lattice-based cryptography. Master’s thesis, Eindhoven University of
Technology (2011)

76. Viterbo, E., Biglieri, E.: Computing the voronoi cell of a lattice: the diamond-cutting
algorithm. IEEE Transact. Inf. Theory 42(1), 161–171 (1996)

77. Wang, J., Shen, H.T., Song, J., Ji, J.: Hashing for similarity search: a survey.
arXiv:1408.2927 [cs.DS], pp. 1–29 (2014)

78. Wang, X., Liu, M., Tian, C., Bi, J.: Improved Nguyen-Vidick heuristic sieve algo-
rithm for shortest vector problem. In: ASIACCS, pp. 1–9 (2011)

79. Yang, S.-Y., Kuo, P.-C., Yang, B.-Y., Cheng, C.-M.: Gauss sieve algorithm on GPUs.
In: Handschuh, H. (ed.) CT-RSA 2017. LNCS, vol. 10159, pp. 39–57. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-52153-4 3

80. Zhang, F., Pan, Y., Hu, G.: A three-level sieve algorithm for the shortest vector prob-
lem. In: SAC, pp. 29–47 (2013)

https://doi.org/10.1007/978-3-319-14325-5_5
https://doi.org/10.1007/978-3-319-14325-5_5
https://doi.org/10.1007/978-3-642-23178-0_40
https://doi.org/10.1007/978-3-642-15291-7_21
https://doi.org/10.1007/978-3-642-15291-7_21
https://doi.org/10.1007/978-3-642-19094-0_11
https://doi.org/10.1007/978-3-642-38553-7_22
http://noahsd.com/latticeproblems.pdf
http://arxiv.org/abs/1408.2927
https://doi.org/10.1007/978-3-319-52153-4_3

	Finding Closest Lattice Vectors Using Approximate Voronoi Cells
	1 Introduction
	1.1 Related Work
	1.2 Contributions: Approximate Voronoi Cells
	1.3 Contributions: Randomized Slicing
	1.4 Contributions: Improved CVPP Complexities
	1.5 High-Level Proof Description
	1.6 Intermezzo: Another Few Dimensions for Free
	1.7 Contributions: Experimental Results
	1.8 Contributions: Asymptotics for Variants of CVPP
	1.9 Open Problems
	1.10 Outline

	References




